Dynamical System Lecture 0 Introduction
“Dynamical systems study where things go & came from”
Basic concepts
Where we study things
\(f:X\rightarrow X,\;X \text{ compact},\; f \text{ continuous}\) \(x,f(x), f^2(x),\cdots\) is called the future \(\cdots, f^{-2}(x), f^{-1}(x), x\) is the past
Orbit of \(x\): \(o(x):=\{f^n(x)\}_{n\in\mathbb{Z}}\)
Behavior of Orbits
- Limit point: \(f(L)=L\)
- Periodic point: \(\exists n \text{ finite}\) s.t. \(f^n(x)=x\), n-periodic
- Dense orbit: \(\overline{O(x)} = X\) i.e. each open set contains a orbit point of \(x\)
e.g. for Circle Rotation \(R_\theta(x)=x+\theta \;(mod\; 1)\), if \(\theta \in \mathbb{Q}\), \(R_\theta\) is periodic; otherwise, \(R_\theta\) is dense in \(\mathbb{S}^1\)
Definitions
- Transitivity and minimality:
- if a system has a dense orbit, it’s called transitive,
- if every orbit in the system is dense, it’s called minimal.
- North pole & south pole (robust and stable): where the system has 2 fixed points, one (south) attracting, one (north) repelling.
- saddle node (fragile and unstable): \(f^n(x)\rightarrow N\) on one side, \(f^n(x)\rightarrow S\) on the other side.
Note: if a system has N-S poles or saddle point, it’s non-dense {: .prompt-info}
Smale’s horseshoe
\(f:[0,1]\rightarrow[0,1]\) defined as below, (\(D_{-1}=R_0 \cup R_1\)) 
Encoding (Symbolic Dynamics)
- Define \(H_n = \cap_{-n}^{n} D_i\) and \(H=\lim_{n\rightarrow \infty} H_n\) is the subset irrelevant under \(f\), looks like a product of Cantor set.
- Starting with \(x\in D_{-1}\), for each step, \(x\) is located in one of \(1/3^n\) square. Encode \(x\) with \(h(x)_n: H \rightarrow \{0,1\}^\mathbb{Z}=\Sigma_2\) defined as: \(h(x)_n = 0\) if \(f^n(x)\in R_0\), \(1\) otherwise. (\(\cdots,x\rightarrow0,f(x)\rightarrow1,f^2(x)\rightarrow 1,\cdots\))
The interior defines x. {: .prompt-info}
Decoding
\(g:\Sigma_2\rightarrow H\) let \((x_n)_{n\in \mathbb{Z}}\in \{0,1\}^\mathbb{Z}\) be the code, \(x\in R_{x_0},\;f(x)\in R_{x_1}\rightarrow x\in f^{-1}(R_{x_1}),\;f(x)\in R_{x_2}\rightarrow x\in f^{-1}(R_{x_2}),\cdots\) \(\implies x=\cap_{n\in \mathbb{Z}}f^{-n}(R_{x_n})\). This makes sense since \(R_N(x)=\cap_{-N}^{N}f^{-n}(R_{x_n})\) has diameter \(\leq 1/3^N\).
Some properties of the system
- the system has periodic points
- the periodic points are dense
- the system is transitive
- the system is chaotic
Morphisms
In dynamical systems, we focus on a category of maps called topological conjugacy since it preserves desired properties. i.e. Isomorphisms in DS.
Definition: if \(\varphi \circ\sigma=f\circ\varphi\), \(\varphi\) is a homeomorphism, \(\sigma,f\) are called (topological) conjugated. {: .prompt-info}
\[ \begin{array}{lll} &X &\xrightarrow{\sigma} &X \\ &\varphi \downarrow& &\varphi\downarrow \\ &H &\xrightarrow{f} &H \end{array} \]
(\(X=\Sigma_2,H=H\) in Smale’s Horseshoe)
Properties
- \(\varphi\) takes orbits to orbits
- periodic orbits to periodic orbits
- dense orbits to dense orbits
proof:
- wts \(\varphi \circ \sigma^n = f^n \circ \varphi\)
\(\varphi \circ \sigma^n = \varphi \circ \sigma \circ\sigma^{n-1}=f\circ \varphi \circ \sigma^{n-2}=\cdots=f^n \circ \varphi\) - let \(p\) be \(\sigma\)-periodic, \(\sigma^N(p)=p\), wts \(\varphi(p)\) is \(f\)-periodic of \(N\) \(f^N\circ \varphi(p)=\varphi\circ\sigma^N(p)=\varphi(p)\)
- dense: \(\overline{O_{\sigma}(x)} = X\), wts \(\overline{O_{f}(h(x))} = H\) take \(\varnothing\neq V\subsetneq H\) be a non-trivial open set in \(H\), the \(h^{-1}(V)\) is open in \(X\) \(\implies \exists N \in \mathbb{N}\) s.t. \(\sigma^N(x) \in \varphi^{-1}(V)\) (since \(h^{-1}(V) \cap \overline{O_{\sigma}(x)} \neq \varnothing\)) \(\implies\varphi \circ \sigma^N(x) \in V\) \(\implies f^N \circ \varphi(x) \in V\) \({O_{f}(h(x))} \cap V \neq \varnothing\) for any \(V\) open, implies \(\overline{O_{f}(h(x))} = H\)
Symbolic Dynamics
The idea is to encode the system with a symbolic system through topological conjugacy, which is easier to analyze.
Space \(\Sigma_2=\{0,1\}^\mathbb{Z}\)
A Metric of \(\Sigma_2\)
\(x,y \in \Sigma_2\) \(d(x,y)=2^{-j}\) where \(j\) is the first index where \(x_j\neq y_j: j=min\{|k|:x_k\neq y_k,k\in \mathbb{Z}\}\)
- \(B(1,1/2^3)=\{x|x_i=1,\forall i<3\}\) i.e. \(x_3\neq 1\) or \(x_{-3}\neq 1\) \(\cdots,-3,-2,-1,0,1,2,3\cdots\) \(\cdots,1,1,1,1,1,1,0\cdots\) \(\cdots,0,1,1,1,1,1,1\cdots\)
- With this metric, \(\Sigma_2\) is compact. Prop: the balls \(B(x, 2^{-k})\) are clopen sets (both open and closed) in \(\Sigma_2\). Col: \(\Sigma_2\) is totally disconnected. proof: (closed) let \((x^{(n)})_{n\in\mathbb{Z}} \subset B(x,2^{-k})\) be a convergent sequence s.t. \(x^{(n)}\rightarrow x_*\), we wts \(x_*\in B(x,2^{-k})\). since \(d(x^{(n)},x_*)\rightarrow 0\), given \(k, \exists N, \forall n>N, x^{(n)}_i=x_{*i},\forall |i|\leq k-1\) and \(x^{(n)}_{\pm k}\neq x_{*{\pm k}}\) now, \(d(x^{(n)},x_*) \leq d(x^{(n)},x)+d(x^{(n)},x_*) \leq 2^{-k}+\epsilon\leq 2^{-k}\), implies \(x_*\in B(x,2^{-k})\). (open) \(\forall y\in B(x,2^{-k})\), we wts \(\exists n\) s.t. \(B(y,2^{-n})\subset B(x,2^{-k})\). but this is obvious since we can choose \(n>k\).
(To be continued)